随着实验的增加,操作的复杂程度也在提高。我们可能需要切分数据集,对特征进行二值化处理,以特征或数据集中的个体为基础规范化数据,除此之外还可能需要其他各种操作。要跟踪记录所有这些操作可不容易,如果中间出点问题,先前实验的结果将很难再现。常见问题有落下步骤,数 ...
目录正则化算法(RegularizationAlgorithms)集成算法(EnsembleAlgorithms)决策树算法(DecisionTreeAlgorithm)回归(Regression)人工神经网络(ArtificialNeuralNetwork)深度学习(DeepLearning)支持向量机(SupportVectorMachine)降维算法(DimensionalityReduction ...
数据挖掘旨在让计算机根据已有数据做出决策。决策可以是预测明天的天气、拦截垃圾邮件、检测网站的语言,或者在约会网站上发现新的恋爱对象。数据挖掘方面的应用已经有很多,新的应用也在源源不断地出现。数据挖掘涉及算法、统计学、工程学、最优化理论和计算机科学相关领域的 ...
训练集里面的观测值构成了算法用来学习的经验数据。在监督学习问题中,每个观测值都由一个响应变量和若干个解释变量组成。 测试集是一个类似的观测值集合,用一些度量标准来评估模型的运行效果。需要注意的是,测试集的数据不能出现在训练集中。否则,很难评价算法是否从 ...
      常见的监督式机器学习任务就是分类(classification)和回归(regression)。分类认为需要学会从 若干变量约束条件中预测出目标变量的值,就是必须预测出新观测值的类型,种类或标签。分类的应用包括预测股票的涨跌,新闻头条是政治 ...
       机器学习系统通常被看作是有无人类监督学习两种方式。监督学习问题是,从成对的已经标记好的输入和输出经验数据作为一个输入进行学习,用来预测输出结果,是从有正确答案的例子中学习。而无监督学习是程序不能从已经标记好的数据中 ...
在Python中,可以方便地使用os模块来运行其他脚本或者程序,这样就可以在脚本中直接使用其他脚本或程序提供的功能,而不必再次编写实现该功能的代码。为了更好地控制运行的进程,可以使用win32process模块中的函数,如果想进一步控制进程,则可以使用ctype模块,直接调用kern ...
 简介Python是一种高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python由GuidovanRossum于1989年底在荷兰国家数学和计算机科学研究所发明,第一个公开发行版发行于1991年。特点易于学习:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习 ...
在我们回顾人工智能的历史之前,先来看看流行的人工智能的定义。目前,最被认可的人工智能定义为:能像人一样理性地思考和理性地行动的机器。行动被广义地理解为采取行动、制定行动的决策,并非肢体动作。人工智能分强弱两类。强人工智能为能推理(Reasoning)和解决问题(Pr ...